Maestría en Ciencias Computacionales
975 horas
Modalidad Online
Resumen
La Maestría en Ciencias de la Computación está diseñada para abordar la creciente dependencia de la tecnología informática en prácticamente todas las áreas de la vida. En la actualidad, los sistemas de computación se utilizan cada vez más para mejorar y simplificar la forma en que las personas interactúan con el mundo y entre sí. Las últimas innovaciones y desarrollos en áreas como la computación en la nube, la inteligencia artificial, el aprendizaje automático, el internet de las cosas y la realidad aumentada están transformando la forma en que las empresas operan, los gobiernos se relacionan con sus ciudadanos y las personas se comunican entre sí. Cursar esta Maestría permitirá a los estudiantes actualizar y profundizar sus conocimientos en estos temas en constante evolución.
Objetivos
- Adquirir conocimientos fundamentales en ciencias de la computación y pensamiento computacional. - Desarrollar habilidades en programación orientada a objetos y en ingeniería de software. - Conocer los principios de la automatización industrial y los sistemas HMI y SCADA en procesos industriales. - Comprender las redes y bases de comunicación industriales y su aplicación en la Industria 4.0 y Smart Building. - Aprender sobre tecnologías aplicadas a IoT y sistemas ciberfísicos, incluyendo Machine Learning y visión artificial. - Desarrollar habilidades en ciencia de datos y data science para su aplicación en la industria y otros campos.
Salidas profesionales
Nuestra Maestría en Ciencias de la Computación te prepara para trabajar con tecnologías avanzadas como IoT, ciberfísicos, Machine Learning, visión artificial y big data, lo que te permite destacar en una industria competitiva. Es una opción para aquellos que buscan expandir sus habilidades en la informática y hacer una contribución en la industria y otros campos relacionados.
Para que te prepara
La Maestría en Ciencias de la Computación te prepara para una variedad de roles en el campo de la informática y la tecnología, especialmente en la industria. Te proporciona una comprensión profunda de los conceptos fundamentales de la informática, las habilidades de pensamiento crítico necesarias para resolver problemas complejos y la capacidad de aplicar este conocimiento en situaciones prácticas en la industria.
A quién va dirigido
Esta Maestría en Ciencias de la Computación puede ir dirigida a aquellos que deseen profundizar en sus habilidades en el campo de las ciencias de la computación, la ingeniería de software, la automatización industrial, la IoT, así como a aquellos que deseen incursionar en estas áreas. También puede ser útil para profesionales que desean actualizar sus conocimientos.
Temario
- Presentación al pensamiento computacional
- ¿Qué es y para qué se usa pensamiento computacional?
- ¿Quiénes deben de aprender el pensamiento computacional?
- Pensamiento analítico
- Razonamiento aproximado, conceptual, convergente, divergente, sistemático, sinvergente
- Proceso, conceptos y actitudes del pensamiento computacional
- Proceso de simulación
- Concepto y procesos de paralelismo automatización
- Trabajo en equipo en el pensamiento computacional
- Abstracción en pensamiento computacional
- Descomprimir los elementos
- Proceso de evaluación de pensamiento computacional
- Posibles problemas
- Datos relacionados con de entrada y salida en el pensamiento
- Solución al problema
- Ciclo de desarrollo del software bajo el paradigma de orientación a objetos: Análisis, diseño y programación orientada a objetos
- Análisis del proceso de construcción de software: Modularidad
- Distinción del concepto de módulo en el paradigma orientado a objetos
- Identificación de objetos como abstracciones de las entidades del mundo real que se quiere modelar
- Distinguir el concepto de clase y sus atributos, métodos y mecanismo de encapsulación
- Análisis de los objetos: Estado, comportamiento e identidad
- Uso de objetos como instancias de clase. Instancia actual (this, self, current)
- Identificación del concepto de programa en el paradigma orientado a objetos. POO = Objetos + Mensajes
- Descripción del concepto de herencia: Simple y múltiple
- Distinción de la herencia múltiple
- Creación de objetos en la herencia
- Clasificación jerárquica de las clases
- Distinción entre Agregación/Composición
- Distinción entre Generalización / Especialización
- Identificación de asociaciones
- Concepto
- Tipos
- Identificación de elementos básicos: constantes, variables, operadores y expresiones
- Análisis de estructuras de control: Secuencial, condicional y de repetición
- Distinción entre funciones y procedimientos
- Demostración de llamadas a funciones y procedimientos
- Empleo de llamadas a funciones y procedimientos incluidos en las clases
- Enumeración de datos simples: Numéricos (enteros y reales), lógicos, carácter, cadena de caracteres, puntero o referencia a memoria
- Datos estructurados: Arrays
- Mecanismos de gestión de memoria
- Análisis del lenguaje de programación orientado a objetos y paradigma orientado a objetos
- Comparación entre los lenguajes de programación orientados a objetos más habituales. Características esenciales
- Librerías de clases
- Elección del lenguaje
- Enumeración de los tipos de aplicaciones
- Herramientas de desarrollo
- Tipos de datos y elementos básicos característicos del lenguaje. Instrucciones
- Estudio y utilización de las clases básicas incluidas en la librería de clases
- Definición de clases
- Agregación /Composición y Asociación
- Gestión de eventos
- Empleo de hilos
- Definición y análisis de programación en red
- Acceso a bases de datos desde las aplicaciones. Librerías de clases asociadas
- La investigación científica: proceso de descubrimiento y construcción del conocimiento
- El ejercicio profesional y el uso de insumos variados en la ciencia y tecnología
- Origen de un proceso de Investigación y opciones paradigmáticas
- Construcción de un marco conceptual y antecedentes como parte de una iniciativa de Investigación
- Actuación sobre el problema, propósito y objetivo
- Definiciones claves
- Delimitación y justificación de cada Investigación
- Revisión de literatura relevante y sustentación de las variables en el marco de un proceso de investigación
- Identificación, selección, clasificación y uso de fuentes y sustentación de las variables e hipótesis
- Diseño
- Universo
- Muestreo
- Instrumentación
- Recolección y procesamiento de datos
- Análisis, interpretación y reporte de resultados
- Introducción: Conceptos básicos
- Etapas de la ingeniería del software
- Elementos básicos de la ingeniería del software
- Introducción
- Arquitectura dirigida por modelos (MDA)
- Sistemas de Información: Modelado de Estructuras
- Descripción y tipos de patrones
- Modelos de patrones
- Metodologías ágiles
- Programación Extrema
- Proceso Unificado de Racional
- Tipos de pruebas
- Estrategias de las pruebas
- Diseño de pruebas y casos
- Implementación y Ejecución de las pruebas
- Concepto y entornos de desarrollo
- Clasificación de herramienta CASE
- Herramientas de Análisis y Diseño
- Herramientas para realizar pruebas
- Conceptos previos
- Objetivos de la automatización
- Grados de automatización
- Clases de automatización
- Equipos para la automatización industrial
- Diálogo Hombre-máquina, HMI y SCADA
- Principios y propiedades de la corriente eléctrica
- Fenómenos eléctricos y electromagnéticos
- Medida de magnitudes eléctricas. Factor de potencia
- Leyes utilizadas en el estudio de circuitos eléctricos
- Sistemas monofásicos. Sistemas trifásicos
- Tipos de motores y parámetros fundamentales
- Procedimientos de arranque e inversión de giro en los motores
- Sistemas de protección de líneas y receptores eléctricos
- Variadores de velocidad de motores. Regulación y control
- Dispositivos de protección de líneas y receptores eléctricos
- Automatismos secuenciales y continuos. Automatismos cableados
- Elementos empleados en la realización de automatismos: elementos de operador, relé, sensores y transductores
- Cables y sistemas de conducción de cables
- Técnicas de diseño de automatismos cableados para mando y potencia
- Técnicas de montaje y verificación de automatismos cableados
- Reglajes y ajustes de sistemas mecánicos, neumáticos e hidráulicos
- Reglajes y ajustes de sistemas eléctricos y electrónicos
- Ajustes de Programas de PLC entre otros
- Reglajes y ajustes de sistemas electrónicos
- Reglajes y ajustes de los equipos de regulación y control
- Informes de montaje y de puesta en marcha
- Introducción a las funciones de los autómatas programables PLC
- Contexto evolutivo de los PLC
- Uso de autómatas programables frente a la lógica cableada
- Tipología de los autómatas desde el punto de vista cuantitativo y cualitativo
- Definición de autómata microPLC
- Instalación del PLC dentro del cuadro eléctrico
- Funcionamiento y bloques esenciales de los autómatas programables
- Elementos de programación de PLC
- Descripción del ciclo de funcionamiento de un PLC
- Fuente de alimentación existente en un PLC
- Arquitectura de la CPU
- Tipología de memorias del autómata para el almacenamiento de variables
- La necesidad de las redes de comunicación industrial
- Sistemas de control centralizado, distribuido e híbrido
- Sistemas avanzados de organización industrial: ERP y MES
- La pirámide CIM y la comunicación industrial
- Las redes de control frente a las redes de datos
- Buses de campo, redes LAN industriales y LAN/WAN
- Arquitectura de la red de control: topología anillo, estrella y bus
- Aplicación del modelo OSI a redes y buses industriales
- Fundamentos de transmisión, control de acceso y direccionamiento en redes industriales
- Procedimientos de seguridad en la red de comunicaciones
- Introducción a los estándares RS, RS, IEC, ISOCAN, IEC, Ethernet, USB
- Contexto evolutivo de los sistemas de visualización
- Sistemas avanzados de organización industrial: ERP y MES
- Consideraciones previas de supervisión y control
- El concepto de “tiempo real” en un SCADA
- Conceptos relacionados con SCADA
- Definición y características del sistemas de control distribuido
- Sistemas SCADA frente a DCS
- Viabilidad técnico económica de un sistema SCADA
- Mercado actual de desarrolladores SCADA
- PC industriales y tarjetas de expansión
- Pantallas de operador HMI
- Características de una pantalla HMI
- Software para programación de pantallas HMI
- Dispositivos tablet PC
- Conceptos iniciales de automatización
- Fijación de los objetivos de la automatización industrial
- Grados de automatización
- Clases de automatización
- Equipos para la automatización industrial
- Diálogo Hombre-máquina, HMI y SCADA
- Introducción a las funciones de los autómatas programables PLC
- Contexto evolutivo de los PLC
- Uso de autómatas programables frente a la lógica cableada
- Tipología de los autómatas desde el punto de vista cuantitativo y cualitativo
- Definición de autómata microPLC
- Instalación del PLC dentro del cuadro eléctrico
- Funcionamiento y bloques esenciales de los autómatas programables
- Elementos de programación de PLC
- Descripción del ciclo de funcionamiento de un PLC
- Fuente de alimentación existente en un PLC
- Arquitectura de la CPU
- Tipología de memorias del autómata para el almacenamiento de variables
- Módulos de entrada y salida
- Entrada digitales
- Entrada analógicas
- Salidas del PLC a relé
- Salidas del PLC a transistores
- Salidas del PLC a Triac
- Salidas analógicas
- Uso de instrumentación para el diagnóstico y comprobación de señales
- Normalización y escalado de entradas analógicas en el PLC
- Secuencias de operaciones del autómata programable: watchdog
- Modos de operación del PLC
- Ciclo de funcionamiento del autómata programable
- Chequeos del sistema
- Tiempo de ejecución del programa
- Elementos de proceso rápido
- Configuración del PLC
- Tipos de procesadores
- Procesadores centrales y periféricos
- Unidades de control redundantes
- Configuraciones centralizadas y distribuidas
- Comunicaciones industriales y módulos de comunicaciones
- Introducción a la programación
- Programación estructurada
- Lenguajes gráficos y la norma IEC
- Álgebra de Boole: postulados y teoremas
- Uso de Temporizadores
- Ejemplos de uso de contadores
- Ejemplos de uso de comparadores
- Función SET-RESET (RS)
- Ejemplos de uso del Teleruptor
- Elemento de flanco positivo y negativo
- Ejemplos de uso de Operadores aritméticos
- Lenguaje en esquemas de contacto LD
- Reglas del lenguaje en diagrama de contactos
- Elementos de entrada y salida del lenguaje
- Elementos de ruptura de la secuencia de ejecución
- Ejemplo con diagrama de contactos: accionamiento de Motores-bomba
- Ejemplo con diagrama de contactos: estampadora semiautomática
- Introducción a las funciones y puertas lógicas
- Funcionamiento del lenguaje en lista de instrucciones
- Aplicación de funciones FBD
- Ejemplo con Lenguaje de Funciones: taladro semiautomático
- Ejemplo con Lenguaje de Funciones: taladro semiautomático
- Lenguaje en lista de instrucciones
- Estructura de una instrucción de mando Ejemplos
- Ejemplos de instrucciones de mando para diferentes marcas de PLC
- Instrucciones en lista de instrucciones IL
- Lenguaje de programación por texto estructurado ST
- Presentación de la herramienta o lenguaje GRAFCET
- Principios Básicos de GRAFCET
- Definición y uso de las etapas
- Acciones asociadas a etapas
- Condición de transición
- Reglas de Evolución del GRAFCET
- Implementación del GRAFCET
- Necesidad del pulso inicial
- Elección condicional entre secuencias
- Subprocesos alternativos Bifurcación en O
- Secuencias simultáneas
- Utilización del salto condicional
- Macroetapas en GRAFCET
- El programa de usuario
- Ejemplo resuelto con GRAFCET: activación de semáforo
- Ejemplo resuelto con GRAFCET: control de puente grúa
- Secuencia de LED
- Alarma sonora
- Control de ascensor con dos pisos
- Control de depósito
- Control de un semáforo
- Cintas transportadoras
- Control de un Parking
- Automatización de puerta Corredera
- Automatización de proceso de elaboración de curtidos
- Programación de escalera automática
- Automatización de apiladora de cajas
- Control de movimiento vaivén de móvil
- Control preciso de pesaje de producto
- Automatización de clasificadora de paquetes
- Contexto evolutivo de los sistemas de visualización
- Sistemas avanzados de organización industrial: ERP y MES
- Consideraciones previas de supervisión y control
- El concepto de “tiempo real” en un SCADA
- Conceptos relacionados con SCADA
- Definición y características del sistemas de control distribuido
- Sistemas SCADA frente a DCS
- Viabilidad técnico económica de un sistema SCADA
- Mercado actual de desarrolladores SCADA
- PC industriales y tarjetas de expansión
- Pantallas de operador HMI
- Características de una pantalla HMI
- Software para programación de pantallas HMI
- Dispositivos tablet PC
- Principio de funcionamiento general de un sistema SCADA
- Subsistemas que componen un sistema de supervisión y mando
- Componentes de una RTU, funcionamiento y características
- Sistemas de telemetría: genéricos, dedicados y multiplexores
- Software de control de una RTU y comunicaciones
- Tipos de capacidades de una RTU
- Interrogación, informes por excepción y transmisiones iniciadas por RTU´s
- Detección de fallos de comunicaciones
- Fases de implantación de un SCADA en una instalación
- Fundamentos de programación orientada a objetos
- Driver, utilidades de desarrollo y Run-time
- Las utilidades de desarrollo y el programa Run-time
- Utilización de bases de datos para almacenamiento
- Métodos de comunicación entre aplicaciones: OPC, ODBC, ASCII, SQL y API
- La evolución del protocolo OPC a OPC UA (Unified Architecture)
- Configuración de controles OPC en el SCADA
- Símbolos y diagramas
- Identificación de instrumentos y funciones
- Simbología empleada en el control de procesos
- Diseño de planos de implantación y distribución
- Tipología de símbolos
- Ejemplos de esquemas
- Fundamentos iniciales del diseño de un sistema automatizado
- Presentación de algunos estándares y guías metodológicas
- Diseño industrial
- Diseño de los elementos de mando e indicación
- Colores en los órganos de servicio
- Localización y uso de elementos de mando
- Origen de la guía GEMMA
- Fundamentos de GEMMA
- Rectángulos-estado: procedimientos de funcionamiento, parada o defecto
- Metodología de uso de GEMMA
- Selección de los modos de marcha y de paro
- Implementación de GEMMA a GRAFCET
- Método por enriquecimiento del GRAFCET de base
- Método por descomposición por TAREAS: coordinación vertical o jerarquizada
- Tratamiento de alarmas con GEMMA
- Paquetes software comunes
- Módulo de configuraciónHerramientas de interfaz gráfica del operador
- Utilidades para control de proceso
- Representación de Trending
- Herramientas de gestión de alarmas y eventos
- Registro y archivado de eventos y alarmas
- Herramientas para creación de informes
- Herramienta de creación de recetas
- Configuración de comunicaciones
- Criterios iniciales para el diseño
- Arquitectura
- Consideraciones en la distribución de las pantallas
- Elección de la navegación por pantallas
- Uso apropiado del color
- Correcta utilización de la Información textual
- Adecuada definición de equipos, estados y eventos de proceso
- Uso de la información y valores de proceso
- Tablas y gráficos de tendencias
- Comandos e ingreso de datos
- Correcta implementación de Alarmas
- Evaluación de diseños SCADA
- La necesidad de las redes de comunicación industrial
- Sistemas de control centralizado, distribuido e híbrido
- Sistemas avanzados de organización industrial: ERP y MES
- La pirámide CIM y la comunicación industrial
- Las redes de control frente a las redes de datos
- Buses de campo, redes LAN industriales y LAN/WAN
- Arquitectura de la red de control: topología anillo, estrella y bus
- Aplicación del modelo OSI a redes y buses industriales
- Fundamentos de transmisión, control de acceso y direccionamiento en redes industriales
- Procedimientos de seguridad en la red de comunicaciones
- Introducción a los estándares RS, RS, IEC, ISOCAN, IEC, Ethernet, USB
- Buses de campo: aplicación y fundamentos
- Evaluación de los buses industriales
- Diferencias entre cableado convencional y cableado con Bus
- Selección de un bus de campo
- Funcionamiento y arquitectura de nodos y repetidores
- Conectores normalizados
- Normalización
- Comunicaciones industriales aplicadas a instalaciones en Domótica e Inmótica
- Buses propietarios y buses abiertos
- Tendencias
- Gestión de redes
- Clasificación de los buses
- AS-i (Actuator/Sensor Interface)
- DeviceNet
- CANopen (Control Area Network Open)
- SDS (Smart Distributed System)
- InterBus
- WorldFIP (World Factory Instrumentation Protocol)
- HART (Highway Addressable Remote Transducer)
- P-Net
- BITBUS
- ARCNet
- CONTROLNET
- PROFIBUS (PROcess FIeld BUS)
- FIELDBUS FOUNDATION
- MODBUS
- ETHERNET INDUSTRIAL
- Historia del bus AS-Interface
- Características del bus AS-i
- Componentes del bus AS-i pasarelas…
- Montaje y composición
- Configuración de la red AS-Interface
- Aplicación del modelo ISO/OSI albus AS-i
- Conectividad y pasarelas
- El esclavo y la comunicación con los sensores y actuadores (Interfaz )
- Sistemas de transmisión (Interfaz )
- El maestro AS-i (Interfaz )
- El protocolo AS-Interface: características, codificación, acceso al medio, errores y configuración
- Fases operativas del funcionamiento del bus
- PROFIBUS (Process Field BUS)
- Introducción a Profibus
- Utilización de los perfiles de PROFIBUS para DP, PA y FMS
- Modelo ISO OSI para Profibus
- Cable para RS-, fibra óptica y IEC -
- Coordinación de datos en Profibus
- Profibus DP Funciones Básicas y Configuración
- Profibus FMS
- Comunicación y aplicaciones del Profibus-PA
- Resolución de errores con Profisafe
- Aplicaciones para dispositivos especiales
- Archivos GSD y número de identificación para la conexión de dispositivos
- Fundamentos del protocolo CAN
- Formato de trama en el protocolo CAN
- Estudio del acceso al medio en el protocolo CAN
- Sincronización
- Topología
- Tipología de conectores en CAN
- Aplicaciones: CANopen, DeviceNet, TTCAN…
- Introducción al BUS CANopen
- Arquitectura simplificada de CANOpen
- Uso del diccionario de objetos en CANopen
- Perfiles
- Gestión de la res
- Estructura de CANopen: definición de SDOs y PDOs
- Ethernet y el ámbito industrial
- Las ventajas de Ethernet industrial respecto al resto
- Soluciones para compatibilizar Ethernet en la industria
- Evoluciones del protocolo: RETHER y ETHEREAL
- Mecanismos de prioridad en Ethernet: IEEE P y configuración del switch
- Componentes y esquemas
- Uso de Ethernet industrial en los Buses de campo
- PROFINET
- EtherNet/IP
- ETHERCAT
- Contexto de la tecnología inalámbrica en aplicaciones industriales
- Sistemas Wireless
- Componentes
- Wireless en la industria
- Tecnologías de transmisión
- Tipologías de wireless
- Parámetros de las redes inalámbricas
- Antenas
- Wireless Ethernet
- Estándar IEEE
- Elementos de seguridad en una red Wi-Fi
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
- Contexto Sistemas Ciberfísicos (CPS)
- Características CPS
- Componentes CPS
- Ejemplos de uso
- Retos y líneas de trabajo futuras
- Conceptos previos
- Objetivos de la automatización
- Grados de automatización
- Clases de automatización
- Equipos para la automatización industrial
- Diálogo Hombre-máquina, HMI y SCADA
- ¿Qué es la Industria 4.0?
- Sensores y captación de información
- Ciclo de vida de los productos en la Industria 4.0
- Modelos de negocio basados en la industria 4.0
- IoT industrial
- Industria 4.0
- Necesidades en ciberseguridad en la Industria 4.0
- Introducción
- Filosofía BIM
- Sector AEC
- Exigencias del mercado
- Del BIM al CIM
- Software BIM
- El concepto de Smart Building
- El crecimiento del Smart Building desde su inicio
- Climatización
- Iluminación
- Seguridad
- Telecomunicaciones
- Eficiencia energética
- Monitorización
- ¿Qué es un sistema embebido?
- Hardware
- Software
- Funcionamiento de los sistemas embebidos
- Ciclo de vida de desarrollo de software
- Sensores para IoT
- Sensores de temperatura
- Sensor de proximidad
- Sensor de presión
- Sensor de calidad del agua
- Sensor de calidad del agua
- Sensor de gas
- Sensor de humo
- Sensores IR(infrarojos)
- Sensores de nivel
- Sensores de imagen
- Sensores de detección de movimiento
- Sensores de acelerómetro
- Sensores de giroscopio
- Sensores de humedad
- Sensores ópticos
- Arquitectura IoT
- Capas de la arquitectura IoT
- Tipos de redes IoT
- Seguridad en redes IoT
- Tecnología inalámbrica para IoT
- 2G/3G/4G/5G Móvil
- 6LoWPAN Direcciones Nodos
- Bluetooth
- LoRaWan
- LTE Cat 0/1
- NB-IoT
- SIGFOX
- Weightless
- Wi-Fi
- WirelessHART
- Zigbee
- Z-Wave
- Diseño lógico de IoT
- Bloques funcionales de IoT
- Modelos de comunicación de IoT y relación
- Modelos de comunicación de IoT y arquitectura
- API de comunicación de IoT
- Aplicación de IoT
- Agricultura inteligente
- Vehículos inteligentes
- Hogar inteligente
- Control inteligente de la contaminación
- Smart Healthcare
- Ciudades Inteligentes
- Smart Retail
- Business Analytics
- Wearables
- Automatización industrial
- Ejemplo de aplicación
- Principales aplicaciones de IoT
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
- Tipos de inteligencia artificial
- Algoritmos aplicados a la inteligencia artificial
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
- Introducción
- Algoritmos
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
- Clasificadores
- Algoritmos
- Componentes
- Aprendizaje
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
- Redes neuronales
- Redes profundas y redes poco profundas
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
- Tipos de redes profundas
- Trabajar con TensorFlow y Python
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
- Introducción
- Antecedentes
- Marco Contextual
- Planteamiento del problema y preguntas de investigación
- Justificación del problema de investigación
- Objetivo general y específicos
- Variables e indicadores
- Definición de términos
- Introducción
- Revisión de literatura referente al estudio a realizar
- Introducción
- Tipo de Estudio
- Descripción de la población y muestra
- Descripción del Instrumento de investigación
- Validación y confiabilidad del Instrumento de investigación
- Procedimientos
- Análisis estadísticos
- Alcances y límites del estudio
- Introducción
- Presentación de Resultados
- Introducción
- Análisis
- Conclusiones
- Recomendaciones
- Referencias
- Anexos
- La visión artificial: definiciones y aspectos principales
- Ópticas
- Iluminación
- Cámaras
- Sistemas 3D
- Sensores
- Equipos compactos
- Metodologías para la selección del hardware
- Algoritmos
- Software
- Segmentación e interpretación de imágenes
- Metodologías para la selección del software
- Aplicaciones clásicas: discriminación, detección de fallos…
- Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)
- ¿Qué es Big Data?
- La era de las grandes cantidades de información. Historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open Data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
- Diagnóstico inicial
- Diseño del proyecto
- Proceso de implementación
- Monitorización y control del proyecto
- Responsable y recursos disponibles
- Calendarización
- Alcance y valoración económica del proyecto
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Modelo de datos
- Tipos de datos
- Claves primarias
- Índices
- El valor NULL
- Claves ajenas
- Vistas
- Lenguaje de descripción de datos (DDL)
- Lenguaje de control de datos (DCL)
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL Teorema de CAP
- Sistemas de Bases de datos NoSQL
- ¿Qué es MongoDB?
- Funcionamiento y usos de MongoDB
- Primeros pasos con MongoDB: Instalación y Shell de comandos
- Creando nuestra primera base de datos NoSQL: Modelo e inserción de datos
- Actualización de datos en MongoDB: Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python Dream Team del Big Data
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
- Selección del problema
- Ejemplo de problema
- Planteamiento del problema
- Definición del problema
- Definición de conceptos
- Límites de la investigación
- Formulación de hipótesis
- Sugerencias para la elaboración de hipótesis
- Hipótesis de investigación
- Hipótesis de nulidad
- Nivel de significación
- Las variables
- Clasificación
- Papel de las variables en las hipótesis
- Investigación descriptiva
- Investigación explicativa
- Investigaciones correlacionales
- Estudios transversales y longitudinales
- Estudios cuantitativos y cualitativos
- La observación
- Los cuestionarios
- La entrevista
- El análisis de contenidos
- Análisis de datos
- Mecanismos y procedimientos para el procesamiento de datos
- Instrumentos estadísticos: porcentajes, el modo, la media, la mediana y la desviación estándar
- Los gráficos lineales
- Los gráficos de barras
- Los gráficos circulares
- Los cuadros de área o volumen.
- Los mapas
- Los esquemas
- Matrices
- Título de tema
- Introducción
- Planteamiento del problema
- Objetivos
- Hipótesis
- Marco teórico
- Metodología
- Tipo de estudio
- Instrumento para la recolección de datos
- Procedimientos
- Universo y muestra
- Esquema de posibles capítulos
- Bibliografía y referencias bibliográficas
- Anexos
Doble titulación: - Maestría Oficial en Ciencias Computacionales expedida por la Universidad Católica Nordestana - Maestría en Ciencias Computacionales expedida por Euroinnova International Online Education